z-logo
open-access-imgOpen Access
Ccm3, a gene associated with cerebral cavernous malformations, is required for neuronal migration
Author(s) -
Angeliki Louvi,
S. Nishimura,
Murat Günel
Publication year - 2014
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.093526
Subject(s) - biology , neocortex , rhoa , subventricular zone , neuronal migration , lissencephaly , neuroscience , loss function , microbiology and biotechnology , neural development , cell migration , progenitor cell , cell , gene , signal transduction , phenotype , genetics , stem cell
Loss of function of cerebral cavernous malformation 3 (CCM3) results in an autosomal dominant cerebrovascular disorder. Here, we uncover a developmental role for CCM3 in regulating neuronal migration in the neocortex. Using cell type-specific gene inactivation in mice, we show that CCM3 has both cell autonomous and cell non-autonomous functions in neural progenitors and is specifically required in radial glia and newly born pyramidal neurons migrating through the subventricular zone, but not in those migrating through the cortical plate. Loss of CCM3 function leads to RhoA activation, alterations in the actin and microtubule cytoskeleton affecting neuronal morphology, and abnormalities in laminar positioning of primarily late-born neurons, indicating CCM3 involvement in radial glia-dependent locomotion and possible interaction with the Cdk5/RhoA pathway. Thus, we identify a novel cytoplasmic regulator of neuronal migration and demonstrate that its inactivation in radial glia progenitors and nascent neurons produces severe malformations of cortical development.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom