z-logo
open-access-imgOpen Access
An extracellular region of Serrate is essential for ligand-induced cis-inhibition of Notch signaling
Author(s) -
R.J. Fleming,
Kazuya Hori,
Anindya Sen,
Gina V. Filloramo,
Jillian M. Langer,
Robert A. Obar,
Spyros ArtavanisTsakonas,
Ayiti C. Maharaj-Best
Publication year - 2013
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.087916
Subject(s) - endocytosis , biology , notch signaling pathway , microbiology and biotechnology , notch proteins , extracellular , ligand (biochemistry) , receptor , cell membrane , intracellular , signal transduction , cell , biochemistry
Cell-to-cell communication via the Notch pathway is mediated between the membrane-bound Notch receptor and either of its canonical membrane-bound ligands Delta or Serrate. Notch ligands mediate receptor transactivation between cells and also mediate receptor cis-inhibition when Notch and ligand are co-expressed on the same cell. We demonstrate in Drosophila that removal of any of the EGF-like repeats (ELRs) 4, 5 or 6 results in a Serrate molecule capable of transactivating Notch but exhibiting little or no Notch cis-inhibition capacity. These forms of Serrate require Epsin (Liquid facets) to transduce a signal, suggesting that ELR 4-6-deficient ligands still require endocytosis for Notch activation. We also demonstrate that ELRs 4-6 are responsible for the dominant-negative effects of Serrate ligand forms that lack the intracellular domain and are therefore incapable of endocytosis in the ligand-expressing cell. We find that ELRs 4-6 of Serrate are conserved across species but do not appear to be conserved in Delta homologs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom