z-logo
open-access-imgOpen Access
Residual body removal during spermatogenesis in C. elegans requires genes that mediate cell corpse clearance
Author(s) -
Jie Huang,
Haibin Wang,
Yingyu Chen,
Xiaochen Wang,
Hong Zhang
Publication year - 2012
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.086769
Subject(s) - biology , microbiology and biotechnology , caenorhabditis elegans , spermatogenesis , gene , gamete , phagocytosis , cell , cytoplasm , genetics , sperm , endocrinology
Generation of spermatozoa involves segregation of most of the cytoplasm into residual bodies, which are detached from spermatids and eliminated in mammals. However, the molecular and cellular mechanism underlying the removal of residual bodies remains largely unknown. Here, we demonstrate that during C. elegans spermatogenesis residual bodies are engulfed and degraded by gonadal sheath cells, a process that uses the same set of genes underlying apoptotic cell removal. The two partially redundant engulfment pathways that clear cell corpses also mediate phagocytosis of residual bodies, possibly by recognizing the 'eat me' signal phosphatidylserine exposed on the surface. The residual body-containing phagosome undergoes a maturation process involving sequential steps including dynamic coating with PtdIns(3)P and association of RAB small GTPases. The genetic hierarchy of residual body removal in hermaphrodites is similar to that of cell corpse clearance, but male residual body removal involves a distinct hierarchy, with differential use of the engulfment genes. Efficient removal of residual bodies regulates the number of spermatids and effective transfer of spermatids during male matings. Our results indicate that a similar molecular mechanism is employed for the removal of residual bodies and apoptotic cell corpses in C. elegans.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom