z-logo
open-access-imgOpen Access
A transiently expressed connexin is essential for anterior neural plate development in Ciona intestinalis
Author(s) -
Christopher Hackley,
Erin Mulholland,
Gil Jung Kim,
Erin NewmanSmith,
William C. Smith
Publication year - 2012
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.084681
Subject(s) - biology , ciona intestinalis , blastula , neural plate , gastrulation , neural fold , connexin , microbiology and biotechnology , neurulation , neural development , mutant , floor plate , neural tube , anatomy , genetics , embryogenesis , embryo , gap junction , gene , intracellular
A forward genetic screen in the ascidian Ciona intestinalis identified a mutant line (frimousse) with a profound disruption in neural plate development. In embryos with the frimousse mutation, the anteriormost neural plate cells, which are products of an FGF induction at the blastula and gastrula stages, initially express neural plate-specific genes but fail to maintain the induced state and ultimately default to epidermis. The genetic lesion in the frimousse mutant lies within a connexin gene (cx-11) that is transiently expressed in the developing neural plate in a temporal window corresponding to the period of a-lineage neural induction. Using a genetically encoded calcium indicator we observed multiple calcium transients throughout the developing neural plate in wild-type embryos, but not in mutant embryos. A series of treatments at the gastrula and neurula stages that block the calcium transients, including gap junction inhibition and calcium depletion, were also found to disrupt the development of the anterior neural plate in a similar way to the frimousse mutation. The requirement for cx-11 for anterior neural fate points to a crucial role for intercellular communication via gap junctions, probably through mediation of Ca(2+) transients, in Ciona intestinalis neural induction.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom