Emergence of embryonic pattern through contact inhibition of locomotion
Author(s) -
John Robert Davis,
Chieh-Yin Huang,
Jennifer Zanet,
Samuel J. Harrison,
Edward Rosten,
Susan Cox,
Daniel Soong,
Graham Dunn,
Brian Stramer
Publication year - 2012
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.082248
Subject(s) - biology , contact inhibition , morphogenesis , embryonic stem cell , microbiology and biotechnology , dynamics (music) , biological dispersal , embryo , drosophila melanogaster , drosophila (subgenus) , evolutionary biology , cell , genetics , population , physics , demography , sociology , acoustics , gene
The pioneering cell biologist Michael Abercrombie first described the process of contact inhibition of locomotion more than 50 years ago when migrating fibroblasts were observed to rapidly change direction and migrate away upon collision. Since then, we have gleaned little understanding of how contact inhibition is regulated and only lately observed its occurrence in vivo. We recently revealed that Drosophila macrophages (haemocytes) require contact inhibition for their uniform embryonic dispersal. Here, to investigate the role that contact inhibition plays in the patterning of haemocyte movements, we have mathematically analysed and simulated their contact repulsion dynamics. Our data reveal that the final pattern of haemocyte distribution, and the details and timing of its formation, can be explained by contact inhibition dynamics within the geometry of the Drosophila embryo. This has implications for morphogenesis in general as it suggests that patterns can emerge, irrespective of external cues, when cells interact through simple rules of contact repulsion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom