z-logo
open-access-imgOpen Access
Neural tube patterning by Ephrin, FGF and Notch signaling relays
Author(s) -
Alberto Stolfi,
Eileen Wagner,
J. Matthew Taliaferro,
Seemay Chou,
Michael Levine
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.072108
Subject(s) - biology , ephrin , ciona intestinalis , neural tube , microbiology and biotechnology , notch signaling pathway , fibroblast growth factor , morphogen , neuroscience , anatomy , transcription factor , spinal cord , signal transduction , genetics , receptor , embryo , gene
The motor ganglion (MG) controls the rhythmic swimming behavior of the Ciona intestinalis tadpole. Despite its cellular simplicity (five pairs of neurons), the MG exhibits conservation of transcription factor expression with the spinal cord of vertebrates. Evidence is presented that the developing MG is patterned by sequential Ephrin/FGF/MAPK and Delta/Notch signaling events. FGF/MAPK attenuation by a localized EphrinAb signal specifies posterior neuronal subtypes, which in turn relay a Delta2/Notch signal that specifies anterior fates. This short-range relay is distinct from the patterning of the vertebrate spinal cord, which is a result of opposing BMP and Shh morphogen gradients. Nonetheless, both mechanisms lead to localized expression of related homeodomain codes for the specification of distinct neuronal subtypes. This MG regulatory network provides a foundation for elucidating the genetic and cellular basis of a model chordate central pattern generator.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom