miR-200c regulates FGFR-dependent epithelial proliferation via Vldlr during submandibular gland branching morphogenesis
Author(s) -
Ivan T. Rebustini,
Toru Hayashi,
Andrew D. Reynolds,
Melvin L. Dillard,
Ellen M. Carpenter,
Matthew P. Hoffman
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.070151
Subject(s) - biology , morphogenesis , microbiology and biotechnology , microrna , submandibular gland , fgf10 , receptor , fibroblast growth factor , endocrinology , gene , genetics
The regulation of epithelial proliferation during organ morphogenesis is crucial for normal development, as dysregulation is associated with tumor formation. Non-coding microRNAs (miRNAs), such as miR-200c, are post-transcriptional regulators of genes involved in cancer. However, the role of miR-200c during normal development is unknown. We screened miRNAs expressed in the mouse developing submandibular gland (SMG) and found that miR-200c accumulates in the epithelial end buds. Using both loss- and gain-of-function, we demonstrated that miR-200c reduces epithelial proliferation during SMG morphogenesis. To identify the mechanism, we predicted miR-200c target genes and confirmed their expression during SMG development. We discovered that miR-200c targets the very low density lipoprotein receptor (Vldlr) and its ligand reelin, which unexpectedly regulate FGFR-dependent epithelial proliferation. Thus, we demonstrate that miR-200c influences FGFR-mediated epithelial proliferation during branching morphogenesis via a Vldlr-dependent mechanism. miR-200c and Vldlr may be novel targets for controlling epithelial morphogenesis during glandular repair or regeneration.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom