z-logo
open-access-imgOpen Access
Distinct and mutually inhibitory binding by two divergent β-catenins coordinates TCF levels and activity inC. elegans
Author(s) -
Xiaodong Yang,
ShuYi Huang,
Miao-Chia Lo,
Kota Mizumoto,
Hitoshi Sawa,
Wenqing Xu,
Scott Robertson,
Rueyling Lin
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.069054
Subject(s) - biology , wnt signaling pathway , catenin , protein subunit , phosphorylation , binding domain , microbiology and biotechnology , transcription factor , binding site , gene , biochemistry , signal transduction
Wnt target gene activation in C. elegans requires simultaneous elevation of β-catenin/SYS-1 and reduction of TCF/POP-1 nuclear levels within the same signal-responsive cell. SYS-1 binds to the conserved N-terminal β-catenin-binding domain (CBD) of POP-1 and functions as a transcriptional co-activator. Phosphorylation of POP-1 by LIT-1, the C. elegans Nemo-like kinase homolog, promotes POP-1 nuclear export and is the main mechanism by which POP-1 nuclear levels are lowered. We present a mechanism whereby SYS-1 and POP-1 nuclear levels are regulated in opposite directions, despite the fact that the two proteins physically interact. We show that the C terminus of POP-1 is essential for LIT-1 phosphorylation and is specifically bound by the diverged β-catenin WRM-1. WRM-1 does not bind to the CBD of POP-1, nor does SYS-1 bind to the C-terminal domain. Furthermore, binding of WRM-1 to the POP-1 C terminus is mutually inhibitory with SYS-1 binding at the CBD. Computer modeling provides a structural explanation for the specificity in WRM-1 and SYS-1 binding to POP-1. Finally, WRM-1 exhibits two independent and distinct molecular functions that are novel for β-catenins: WRM-1 serves both as the substrate-binding subunit and an obligate regulatory subunit for the LIT-1 kinase. Mutual inhibitory binding would result in two populations of POP-1: one bound by WRM-1 that is LIT-1 phosphorylated and exported from the nucleus, and another, bound by SYS-1, that remains in the nucleus and transcriptionally activates Wnt target genes. These studies could provide novel insights into cancers arising from aberrant Wnt activation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom