z-logo
open-access-imgOpen Access
Partially redundant proneural function reveals the importance of timing during zebrafish olfactory neurogenesis
Author(s) -
Romain Madelaine,
Laurence Garric,
Patrick Blader
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.066563
Subject(s) - biology , zebrafish , neurogenesis , mutant , olfactory bulb , microbiology and biotechnology , proneural genes , olfactory system , neuroscience , genetics , progenitor cell , gene , stem cell , central nervous system
Little is known about proneural gene function during olfactory neurogenesis in zebrafish. Here, we show that the zebrafish Atonal genes neurogenin1 (neurog1) and neurod4 are redundantly required for development of both early-born olfactory neurons (EONs) and later-born olfactory sensory neurons (OSNs). We show that neurod4 expression is initially absent in neurog1 mutant embryos but recovers and is sufficient for the delayed development of OSN. By contrast, EON numbers are significantly reduced in neurog1 mutant embryos despite the recovery of neurod4 expression. Our results suggest that a shortened time window for EON development causes this reduction; the last S-phase of EON is delayed in neurog1 mutant embryos but mutant EONs are all post-mitotic at the same stage as EONs in wild-type embryos. Finally, we show that expression of certain genes, such as robo2, is never detected in neurog1 mutant EONs. Failure of robo2 expression to recover correlates with defects in the fasciculation of neurog1 mutant olfactory axonal projections and in the organisation of proto-glomeruli because projections arrive at the olfactory bulb that are reminiscent of those in robo2 mutant embryos. We conclude that the duration of proneural expression in EON progenitors is crucial for correct development of the zebrafish olfactory system.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom