Disruption of reelin signaling alters mammary gland morphogenesis
Author(s) -
Elvira Khialeeva,
Timothy F. Lane,
Ellen M. Carpenter
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.057588
Subject(s) - reelin , dab1 , biology , morphogenesis , microbiology and biotechnology , mammary gland , signal transduction , myoepithelial cell , immunology , gene , genetics , extracellular matrix , cancer , immunohistochemistry , breast cancer
Reelin signaling is required for appropriate cell migration and ductal patterning during mammary gland morphogenesis. Dab1, an intracellular adaptor protein activated in response to reelin signaling, is expressed in the developing mammary bud and in luminal epithelial cells in the adult gland. Reelin protein is expressed in a complementary pattern, first in the epithelium overlying the mammary bud during embryogenesis and then in the myoepithelium and periductal stroma in the adult. Deletion in mouse of either reelin or Dab1 induced alterations in the development of the ductal network, including significant retardation in ductal elongation, decreased terminal branching, and thickening and disorganization of the luminal wall. At later stages, some mutant glands overcame these early delays, but went on to exhibit enlarged and chaotic ductal morphologies and decreased terminal branching: these phenotypes are suggestive of a role for reelin in spatial patterning or structural organization of the mammary epithelium. Isolated mammary epithelial cells exhibited decreased migration in response to exogenous reelin in vitro, a response that required Dab1. These observations highlight a role for reelin signaling in the directed migration of mammary epithelial cells driving ductal elongation into the mammary fat pad and provide the first evidence that reelin signaling may be crucial for regulating the migration and organization of non-neural tissues.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom