When whorls collide: the development of hair patterns in frizzled 6 mutant mice
Author(s) -
Yanshu Wang,
Hao Chang,
Jeremy Nathans
Publication year - 2010
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.057455
Subject(s) - biology , frizzled , hair follicle , bristle , feather , anatomy , morphogenesis , appendage , mutant , evolutionary biology , follicle , microbiology and biotechnology , wnt signaling pathway , genetics , zoology , botany , signal transduction , brush , engineering , gene , electrical engineering
Surface appendages such as bristles, feathers and hairs exhibit both long- and short-range order. In the frizzled 6 null (Fz6(-/-)) mouse the orientations of the earliest born hair follicles are uncorrelated, but over time the follicles reorient to create patterns that are characterized by a high degree of local order. By quantifying follicle orientations over time, in both living and fixed tissues, we define the time course of local hair follicle refinement and the resulting evolution of a montage of competing patterns in Fz6(-/-) skin. We observe an apparently local process that within one week can organize a field of many tens of thousands of follicles, generating long-range order that extends over distances of more than one centimeter. Physical systems that undergo an analogous ordering of vector components suggest potential mechanisms that might apply to the patterning of hair follicles and related biological structures.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom