Sequential changes at differentiation gene promoters as they become active in a stem cell lineage
Author(s) -
Xin Chen,
Chenggang Lu,
Jose Rafael Morillo Prado,
Suk Ho Eun,
Margaret T. Fuller
Publication year - 2011
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.056572
Subject(s) - biology , cellular differentiation , polycomb group proteins , chromatin , promoter , bivalent chromatin , microbiology and biotechnology , genetics , regulation of gene expression , transcription factor , gene , gene expression , repressor
Transcriptional silencing of terminal differentiation genes by the Polycomb group (PcG) machinery is emerging as a key feature of precursor cells in stem cell lineages. How, then, is this epigenetic silencing reversed for proper cellular differentiation? Here, we investigate how the developmental program reverses local PcG action to allow expression of terminal differentiation genes in the Drosophila male germline stem cell (GSC) lineage. We find that the silenced state, set up in precursor cells, is relieved through developmentally regulated sequential events at promoters once cells commit to spermatocyte differentiation. The programmed events include global downregulation of Polycomb repressive complex 2 (PRC2) components, recruitment of hypophosphorylated RNA polymerase II (Pol II) to promoters, as well as the expression and action of testis-specific homologs of TATA-binding protein-associated factors (tTAFs). In addition, action of the testis-specific meiotic arrest complex (tMAC), a tissue-specific version of the MIP/dREAM complex, is required both for recruitment of tTAFs to target differentiation genes and for proper cell type-specific localization of PRC1 components and tTAFs within the spermatocyte nucleolus. Together, the action of the tMAC and tTAF cell type-specific chromatin and transcription machinery leads to loss of Polycomb and release of stalled Pol II from the terminal differentiation gene promoters, allowing robust transcription.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom