z-logo
open-access-imgOpen Access
Quantitative analyses link modulation of sonic hedgehog signaling to continuous variation in facial growth and shape
Author(s) -
Nathan M. Young,
H. Jonathan Chong,
Diane Hu,
Benedikt Hallgrímsson,
Ralph Marcucio
Publication year - 2010
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.052340
Subject(s) - biology , sonic hedgehog , variation (astronomy) , hedgehog , holoprosencephaly , hedgehog signaling pathway , phenotype , developmental biology , forebrain , evolutionary biology , signal transduction , microbiology and biotechnology , genetics , gene , neuroscience , pregnancy , fetus , physics , astrophysics , central nervous system
Variation is an intrinsic feature of biological systems, yet developmental biology does not frequently address population-level phenomena. Sonic hedgehog (SHH) signaling activity in the vertebrate forebrain and face is thought to contribute to continuous variation in the morphology of the upper jaw, but despite its potential explanatory power, this idea has never been quantitatively assessed. Here, we test this hypothesis with an experimental design that is explicitly focused on the generation and measurement of variation in multivariate shape, tissue growth, cellular behavior and gene expression. We show that the majority of upper jaw shape variation can be explained by progressive changes in the spatial organization and mitotic activity of midfacial growth zones controlled by SHH signaling. In addition, nonlinearity between our treatment doses and phenotypic outcomes suggests that threshold effects in SHH signaling may play a role in variability in midfacial malformations such as holoprosencephaly (HPE). Together, these results provide novel insight into the generation of facial morphology, and demonstrate the value of quantifying variation for our understanding of development and disease.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom