z-logo
open-access-imgOpen Access
Drosophila VHL tumor-suppressor gene regulates epithelial morphogenesis by promoting microtubule and aPKC stability
Author(s) -
Serena Duchi,
Luca Fagnocchi,
Valeria Cavaliere,
Anita Hsouna,
Giuseppe Gargiulo,
Tien Hsu
Publication year - 2010
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.042804
Subject(s) - biology , microbiology and biotechnology , microtubule , ubiquitin ligase , mutant , phenotype , tumor suppressor gene , genetic screen , suppressor , gene , cancer research , carcinogenesis , ubiquitin , genetics
Mutations in the human von Hippel-Lindau (VHL) genes are the cause of VHL disease, which displays multiple benign and malignant tumors. The VHL gene has been shown to regulate angiogenic potential and glycolic metabolism via its E3 ubiquitin ligase function against the alpha subunit of hypoxia-inducible factor (HIF). However, many other HIF-independent functions of VHL have been identified and recent evidence indicates that the canonical function cannot fully explain the VHL mutant cell phenotypes. Many of these functions have not been verified in genetically tractable systems. Using an established follicular epithelial model in Drosophila, we show that the Drosophila VHL gene is involved in epithelial morphogenesis via stabilizing microtubule bundles and aPKC. Microtubule defects in VHL mutants lead to mislocalization of aPKC and subsequent loss of epithelial integrity. Destabilizing microtubules in ex vivo culture of wild-type egg chambers can also result in aPKC mislocalization and epithelial defects. Importantly, paclitaxel-induced stabilization of microtubules can rescue the aPKC localization phenotype in Drosophila VHL mutant follicle cells. The results establish a developmental function of the VHL gene that is relevant to its tumor-suppressor activity.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom