Crumbs is required to achieve proper organ size control duringDrosophilahead development
Author(s) -
Emily C. N. Richardson,
Franck Pichaud
Publication year - 2010
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.15
H-Index - 36
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.041913
Subject(s) - adherens junction , biology , microbiology and biotechnology , endocytosis , cell polarity , epithelial polarity , polarity (international relations) , apical membrane , mutant , imaginal disc , morphogenesis , exocyst , ectopic expression , endocytic cycle , transactivation , cadherin , cell , epithelium , genetics , transcription factor , cell culture , membrane , vesicle , gene
Crumbs (Crb) is a conserved apical polarity determinant required for zonula adherens specification and remodelling during Drosophila development. Interestingly, crb function in maintaining apicobasal polarity appears largely dispensable in primary epithelia such as the imaginal discs. Here, we show that crb function is not required for maintaining epithelial integrity during the morphogenesis of the Drosophila head and eye. However, although crb mutant heads are properly developed, they are also significantly larger than their wild-type counterparts. We demonstrate that in the eye, this is caused by an increase in cell proliferation that can be attributed to an increase in ligand-dependent Notch (N) signalling. Moreover, we show that in crb mutant cells, ectopic N activity correlates with an increase in N and Delta endocytosis. These data indicate a role for Crb in modulating endocytosis at the apical epithelial plasma membrane, which we demonstrate is independent of Crb function in apicobasal polarity. Overall, our work reveals a novel function for Crb in limiting ligand-dependent transactivation of the N receptor at the epithelial cell membrane.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom