Algorithm of myogenic differentiation in higher-order organisms
Author(s) -
Ron Piran,
Einat Halperin,
Noga GuttmannRaviv,
Ehud Keinan,
Ram Reshef
Publication year - 2009
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.041764
Subject(s) - myogenesis , biology , multipotent stem cell , cellular automaton , computational biology , mechanism (biology) , microbiology and biotechnology , cellular differentiation , computer science , artificial intelligence , myocyte , genetics , physics , quantum mechanics , gene
Cell fate determination is governed by complex signaling molecules at appropriate concentrations that regulate the cell decision-making process. In vertebrates, however, concentration and kinetic parameters are practically unknown, and therefore the mechanism by which these molecules interact is obscure. In myogenesis, for example, multipotent cells differentiate into skeletal muscle as a result of appropriate interplay between several signaling molecules, which is not sufficiently characterized. Here we demonstrate that treatment of biochemical events with SAT (satisfiability) formalism, which has been primarily applied for solving decision-making problems, can provide a simple conceptual tool for describing the relationship between causes and effects in biological phenomena. Specifically, we applied the Łukasiewicz logic to a diffusible protein system that leads to myogenesis. The creation of an automaton that describes the myogenesis SAT problem has led to a comprehensive overview of this non-trivial phenomenon and also to a hypothesis that was subsequently verified experimentally. This example demonstrates the power of applying Łukasiewicz logic in describing and predicting any decision-making problem in general, and developmental processes in particular.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom