FGF3 in the floor plate directs notochord convergent extension in theCionatadpole
Author(s) -
Weiyang Shi,
Sara M. Peyrot,
Edwin Munro,
Michael Levine
Publication year - 2008
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.029157
Subject(s) - convergent extension , notochord , ciona , biology , ciona intestinalis , microbiology and biotechnology , mesoderm , xenopus , endoderm , neural plate , chordate , anatomy , embryonic stem cell , gastrulation , neural tube , genetics , embryogenesis , embryo , vertebrate , gene
Convergent extension (CE) is the narrowing and lengthening of an embryonic field along a defined axis. It underlies a variety of complex morphogenetic movements, such as mesoderm elongation and neural tube closure in vertebrate embryos. Convergent extension relies on the same intracellular molecular machinery that directs planar cell polarity (PCP) in epithelial tissues, including non-canonical Wnt signaling components. However, it is not known what signals coordinate CE movements across cell fields. In the simple chordate Ciona intestinalis, the notochord plate consists of just 40 cells, which undergo mediolateral convergence (intercalation) to form a single cell row. Here we present evidence that a localized source of FGF3 in the developing nerve cord directs notochord intercalation through non-MAPK signaling. A dominant-negative form of the Ciona FGF receptor suppresses the formation of polarized actin-rich protrusions in notochord cells, resulting in defective notochord intercalation. Inhibition of Ciona FGF3 activity results in similar defects, even though it is expressed in an adjacent tissue: the floor plate of the nerve cord. In Xenopus mesoderm explants, inhibiting FGF signaling perturbs CE and disrupts membrane localization of Dishevelled (Dsh), a key regulator of PCP and CE. We propose that FGF signaling coordinates CE movements by regulating PCP pathway components such as Dsh.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom