z-logo
open-access-imgOpen Access
C. elegans mig-6encodes papilin isoforms that affect distinct aspects of DTC migration, and interacts genetically withmig-17andcollagen IV
Author(s) -
Takehiro Kawano,
Hong Zheng,
David C. Merz,
Yuji Kohara,
Katsuyuki Tamai,
Kiyoji Nishiwaki,
Joseph G. Culotti
Publication year - 2009
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.028472
Subject(s) - biology , microbiology and biotechnology , extracellular matrix , gene isoform , embryonic stem cell , matrix metalloproteinase , basement membrane , mutant , mutation , genetics , gene
The gonad arms of C. elegans hermaphrodites acquire invariant shapes by guided migrations of distal tip cells (DTCs), which occur in three phases that differ in the direction and basement membrane substrata used for movement. We found that mig-6 encodes long (MIG-6L) and short (MIG-6S) isoforms of the extracellular matrix protein papilin, each required for distinct aspects of DTC migration. Both MIG-6 isoforms have a predicted N-terminal papilin cassette, lagrin repeats and C-terminal Kunitz-type serine proteinase inhibitory domains. We show that mutations affecting MIG-6L specifically and cell-autonomously decrease the rate of post-embryonic DTC migration, mimicking a post-embryonic collagen IV deficit. We also show that MIG-6S has two separable functions - one in embryogenesis and one in the second phase of DTC migration. Genetic data suggest that MIG-6S functions in the same pathway as the MIG-17/ADAMTS metalloproteinase for guiding phase 2 DTC migrations, and MIG-17 is abnormally localized in mig-6 class-s mutants. Genetic data also suggest that MIG-6S and non-fibrillar network collagen IV play antagonistic roles to ensure normal phase 2 DTC guidance.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom