C. elegansEVI1 proto-oncogene, EGL-43, is necessary for Notch-mediated cell fate specification and regulates cell invasion
Author(s) -
Byung Joon Hwang,
Alejandro D. Meruelo,
Paul W. Sternberg
Publication year - 2007
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02769
Subject(s) - biology , caenorhabditis elegans , microbiology and biotechnology , cell fate determination , notch signaling pathway , enhancer , ventral nerve cord , precursor cell , cell , genetics , signal transduction , gene , transcription factor , neuroscience , nervous system
During C. elegans development, LIN-12 (Notch) signaling specifies the anchor cell (AC) and ventral uterine precursor cell (VU) fates from two equivalent pre-AC/pre-VU cells in the hermaphrodite gonad. Once specified, the AC induces patterned proliferation of vulva via expression of LIN-3 (EGF) and then invades into the vulval epithelium. Although these cellular processes are essential for the proper organogenesis of vulva and appear to be temporally regulated, the mechanisms that coordinate the processes are not well understood. We computationally identified egl-43 as a gene likely to be expressed in the pre-AC/pre-VU cells and the AC, based on the presence of an enhancer element similar to the one that transcribes lin-3 in the same cells. Genetic epistasis analyses reveal that egl-43 acts downstream of or parallel to lin-12 in AC/VU cell fate specification at an early developmental stage, and functions downstream of fos-1 as well as upstream of zmp-1 and him-4 to regulate AC invasion at a later developmental stage. Characterization of the egl-43 regulatory region suggests that EGL-43 is a direct target of LIN-12 and HLH-2 (E12/47), which is required for the specification of the VU fate during AC/VU specification. EGL-43 also regulates basement membrane breakdown during AC invasion through a FOS-1-responsive regulatory element that drives EGL-43 expression in the AC and VU cells at the later stage. Thus, egl-43 integrates temporally distinct upstream regulatory events and helps program cell fate specification and cell invasion.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom