z-logo
open-access-imgOpen Access
BMPs regulate multiple aspects of growth-plate chondrogenesis through opposing actions on FGF pathways
Author(s) -
Byeong S. Yoon,
Robert Pogue,
Dmitry A. Ovchinnikov,
Isaac Yoshii,
Yuji Mishina,
Richard R. Behringer,
Karen M. Lyons
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02680
Subject(s) - biology , bone morphogenetic protein , fibroblast growth factor , microbiology and biotechnology , chondrogenesis , signal transduction , bmpr2 , chondrocyte , fgf8 , bone morphogenetic protein 2 , mapk/erk pathway , anatomy , genetics , cartilage , stem cell , in vitro , receptor , gene
Bone morphogenetic protein (BMP) signaling pathways are essential regulators of chondrogenesis. However, the roles of these pathways in vivo are not well understood. Limb-culture studies have provided a number of essential insights, including the demonstration that BMP pathways are required for chondrocyte proliferation and differentiation. However, limb-culture studies have yielded contradictory results; some studies indicate that BMPs exert stimulatory effects on differentiation, whereas others support inhibitory effects. Therefore, we characterized the skeletal phenotypes of mice lacking Bmpr1a in chondrocytes (Bmpr1a(CKO)) and Bmpr1a(CKO);Bmpr1b+/- (Bmpr1a(CKO);1b+/-) in order to test the roles of BMP pathways in the growth plate in vivo. These mice reveal requirements for BMP signaling in multiple aspects of chondrogenesis. They also demonstrate that the balance between signaling outputs from BMP and fibroblast growth factor (FGF) pathways plays a crucial role in the growth plate. These studies indicate that BMP signaling is required to promote Ihh expression, and to inhibit activation of STAT and ERK1/2 MAPK, key effectors of FGF signaling. BMP pathways inhibit FGF signaling, at least in part, by inhibiting the expression of FGFR1. These results provide a genetic in vivo demonstration that the progression of chondrocytes through the growth plate is controlled by antagonistic BMP and FGF signaling pathways.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom