The divergent TGF-β ligand Dawdle utilizes an activin pathway to influence axon guidance inDrosophila
Author(s) -
Louise Parker,
Jeremy E. Ellis,
Minh Quang Nguyen,
Kavita Arora
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02673
Subject(s) - biology , axon guidance , axon , mesoderm , neuroscience , tgf beta signaling pathway , signal transduction , microbiology and biotechnology , growth cone , activin receptor , embryonic stem cell , nervous system , transforming growth factor , genetics , gene
Axon guidance is regulated by intrinsic factors and extrinsic cues provided by other neurons, glia and target muscles. Dawdle (Daw), a divergent TGF-beta superfamily ligand expressed in glia and mesoderm, is required for embryonic motoneuron pathfinding in Drosophila. In daw mutants, ISNb and SNa axons fail to extend completely and are unable to innervate their targets. We find that Daw initiates an activin signaling pathway via the receptors Punt and Baboon (Babo) and the signal-transducer Smad2. Furthermore, mutations in these signaling components display similar axon guidance defects. Cell-autonomous disruption of receptor signaling suggests that Babo is required in motoneurons rather than in muscles or glia. Ectopic ligand expression can rescue the daw phenotype, but has no deleterious effects. Our results indicate that Daw functions in a permissive manner to modulate or enable the growth cone response to other restricted guidance cues, and support a novel role for activin signaling in axon guidance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom