Wnt2b/β-catenin-mediated canonical Wnt signaling determines the peripheral fates of the chick eye
Author(s) -
SeoHee Cho,
Constance L. Cepko
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02474
Subject(s) - wnt signaling pathway , biology , microbiology and biotechnology , frizzled , eye development , signal transduction , retina , genetics , gene , neuroscience , phenotype
Wnt signaling orchestrates multiple aspects of central nervous system development, including cell proliferation and cell fate choices. In this study, we used gene transfer to activate or inhibit canonical Wnt signaling in vivo in the developing eye. We found that the expression of Wnt2b or constitutively active (CA) beta-catenin inhibited retinal progenitor gene (RPG) expression and the differentiation of retinal neurons. In addition, Wnt signal activation in the central retina was sufficient to induce the expression of markers of the ciliary body and iris, two tissues derived from the peripheral optic cup (OC). The expression of a dominant-negative (DN) allele of Lef1, or of a Lef1-engrailed fusion protein, led to the inhibition of expression of peripheral genes and iris hypoplasia, suggesting that canonical Wnt signaling is required for peripheral eye development. We propose that canonical Wnt signaling in the developing optic vesicle (OV) and OC plays a crucial role in determining the identity of the ciliary body and iris. Because wingless (wg) plays a similar role in the induction of peripheral eye tissues of Drosophila, these findings indicate a possible conservation of the process that patterns the photoreceptive and support structures of the eye.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom