smoothenedandthickveinsregulate Moleskin/Importin 7-mediated MAP kinase signaling in the developingDrosophilaeye
Author(s) -
Alysia D. VrailasMortimer,
Daniel R. Marenda,
Summer Cook,
Maureen A. Powers,
James A. Lorenzen,
Lizabeth A. Perkins,
Kevin Moses
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02334
Subject(s) - biology , smoothened , drosophila (subgenus) , microbiology and biotechnology , importin , eye development , signal transduction , genetics , hedgehog signaling pathway , nuclear protein , transcription factor , gene
The Drosophila Mitogen Activated Protein Kinase (MAPK) Rolled is a key regulator of developmental signaling, relaying information from the cytoplasm into the nucleus. Cytoplasmic MEK phosphorylates MAPK (pMAPK), which then dimerizes and translocates to the nucleus where it regulates transcription factors. In cell culture, MAPK nuclear translocation directly follows phosphorylation, but in developing tissues pMAPK can be held in the cytoplasm for extended periods (hours). Here, we show that Moleskin antigen (Drosophila Importin 7/Msk), a MAPK transport factor, is sequestered apically at a time when lateral inhibition is required for patterning in the developing eye. We suggest that this apical restriction of Msk limits MAPK nuclear translocation and blocks Ras pathway nuclear signaling. Ectopic expression of Msk overcomes this block and disrupts patterning. Additionally, the MAPK cytoplasmic hold is genetically dependent on the presence of Decapentaplegic (Dpp) and Hedgehog receptors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom