z-logo
open-access-imgOpen Access
Pax6-dependent boundary defines alignment of migrating olfactory cortex neurons via the repulsive activity of ephrin A5
Author(s) -
Tadashi Nomura,
Johan Holmberg,
Jonas Frisén,
Noriko Osumi
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02290
Subject(s) - cerebrum , pax6 , biology , neuroscience , ephrin , cortex (anatomy) , olfactory tubercle , olfactory system , cerebral cortex , anatomy , central nervous system , olfactory bulb , microbiology and biotechnology , gene , signal transduction , genetics , transcription factor
Neuronal migration is a prerequisite event for the establishment of highly ordered neuronal circuits in the developing brain. Here, we report Pax6-dependent alignment of the olfactory cortex neurons in the developing telencephalon. These neurons were generated in the dorsal part of telencephalon, migrated ventrally and stopped at the pallium-subpallium boundary (PSB). In Pax6 mutant rat embryos, however, these neurons invaded the ventral part of the telencephalon by crossing the PSB. Ephrin A5,one of the ligands for EphA receptors, was specifically expressed in the ventral part of the telencephalon, and its expression level was markedly reduced in the Pax6 mutant. Gain- and loss-of-function studies of ephrin A5 indicated that ephrin A5 plays an important role in the alignment of olfactory cortex neurons at the PSB. Our results suggest that Pax6-regulated ephrin A5 acts as a repulsive molecule for olfactory cortex neurons in the developing telencephalon.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom