Massive loss of Cajal-Retzius cells does not disrupt neocortical layer order
Author(s) -
Michio Yoshida,
Stavroula Assimacopoulos,
Kevin R. Jones,
Elizabeth A. Grove
Publication year - 2006
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02209
Subject(s) - reelin , neocortex , reeler , biology , dab1 , primordium , neuroscience , population , microbiology and biotechnology , genetics , extracellular matrix , demography , sociology , gene
Cajal-Retzius (CR) cells, the predominant source of reelin in developing neocortex, are thought to be essential for the inside out formation of neocortical layers. Fate mapping revealed that a large population of neocortical CR cells arises from the cortical hem. To investigate the function of CR cells, we therefore genetically ablated the hem. Neocortical CR cells were distributed beneath the pial surface in control mice, but were virtually absent in hem-ablated mice from embryonic day (E) 10.5 until birth. CR cells derived from other sources did not invade the neocortical primordium to compensate for hem loss. We predicted that neocortical layers would be inverted in hem-ablated animals, as in reeler mice, deficient in reelin signaling. Against expectation, layers showed the standard order. Low levels of reelin in the cortical primordium, or diffusion of reelin from other sites, may have allowed lamination to proceed. Our findings indicate, however, that the sheet of reelin-rich CR cells that covers the neocortical primordium is not required to direct layer order.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom