Hormonal regulation ofmummyis needed for apical extracellular matrix formation and epithelial morphogenesis inDrosophila
Author(s) -
Anna Tonning,
Sigrun Helms,
Heinz Schwarz,
Anne Uv,
Bernard Moussian
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02206
Subject(s) - biology , microbiology and biotechnology , extracellular matrix , morphogenesis , extracellular , cuticle (hair) , mutant , chitin , subcellular localization , biochemistry , anatomy , gene , chitosan , cytoplasm
Many epithelia produce apical extracellular matrices (aECM) that are crucial for organ morphogenesis or physiology. Apical ECM formation relies on coordinated synthesis and modification of constituting components, to enable their subcellular targeting and extracellular assembly into functional matrices. The exoskeleton of Drosophila, the cuticle, is a stratified aECM containing ordered chitin polysaccharide lamellae and proteinaceous layers, and is suited for studies of molecular functions needed for aECM assembly. Here, we show that Drosophila mummy (mmy) mutants display defects in epithelial organisation in conjunction with aberrant deposition of the cuticle and an apical matrix needed for tracheal tubulogenesis. We find that mmy encodes the UDP-N-acetylglucosamine pyrophosphorylase, which catalyses the production of UDP-N-acetylglucosamine, an obligate substrate for chitin synthases as well as for protein glycosylation and GPI-anchor formation. Consequently, in mmy mutants GlcNAc-groups including chitin are severely reduced and modification and subcellular localisation of proteins designated for extracellular space is defective. Moreover, mmy expression is selectively upregulated in epithelia at the time they actively deposit aECM, and is altered by the moulting hormone 20-Hydroxyecdysone, suggesting that mmy is part of a developmental genetic programme to promote aECM formation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom