Molecular characterization of melanocyte stem cells in their niche
Author(s) -
Masatake Osawa,
Gyohei Egawa,
SiuShan Mak,
Mariko Moriyama,
Rasmus Freter,
Saori Yonetani,
Friedrich Beermann,
ShinIchi Nishikawa
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02161
Subject(s) - biology , niche , microbiology and biotechnology , mesenchymal stem cell , stem cell , hair follicle , melanocyte , stem cell niche , downregulation and upregulation , gene expression profiling , gene , gene expression , computational biology , genetics , progenitor cell , biochemistry , melanoma
Emerging evidence from stem cell (SC) research has strengthened the idea that SC fate is determined by a specialized environment, known as the SC niche. However, because of the difficulty of identifying individual stem cells and their surrounding components in situ, the exact mechanisms underlying SC regulation by the niche remain elusive. To overcome this difficulty, we employed melanocyte stem cells (MSCs), which allow the identification of individual SCs in the niche, the lower permanent portion of the hair follicle (HF). Here, we present molecular makers that can distinguish MSCs from other melanocyte (MC) subsets in the HF. We also describe a simple and robust method that allows gene expression profiling in individual SCs. After isolating individual MSCs from transgenic mice in which the MCs are marked by green fluorescence protein (GFP), we performed single-cell transcript analysis to obtain the molecular signature of individual MSCs in the niche. The data suggest the existence of a mechanism that induces the downregulation of various key molecules for MC proliferation or differentiation in MSCs located in the niche. By integrating these data, we propose that the niche is an environment that insulates SCs from various activating stimuli and maintains them in a quiescent state.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom