z-logo
open-access-imgOpen Access
Loss ofDrosophila borealincauses polyploidy, delayed apoptosis and abnormal tissue development
Author(s) -
Kirsten K. Hanson,
Ann C. Kelley,
Mariann Bienz
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02057
Subject(s) - biology , mitosis , microbiology and biotechnology , aurora b kinase , prometaphase , cytokinesis , spindle pole body , endoreduplication , spindle apparatus , multipolar spindles , cell division , genetics , cell cycle , cell , anaphase
The chromosomal passenger complex (CPC) is a key regulator of mitosis in many organisms, including yeast and mammals. Its components co-localise at the equator of the mitotic spindle and function interdependently to control multiple mitotic events such as assembly and stability of bipolar spindles, and faithful chromosome segregation into daughter cells. Here, we report the first detailed characterisation of a CPC mutation in Drosophila, using a loss-of-function allele of borealin (borr). Like its mammalian counterpart, Borr colocalises with the CPC components Aurora B kinase and Incenp in mitotic Drosophila cells, and is required for their localisation to the mitotic spindle. borr mutant cells show multiple mitotic defects that are consistent with loss of CPC function. These include a drastic reduction of histone H3 phosphorylation at serine 10 (a target of Aurora B kinase), a pronounced attenuation at prometaphase and multipolar spindles. Our evidence suggests that borr mutant cells undergo multiple consecutive abnormal mitoses, producing large cells with giant nuclei and high ploidy that eventually apoptose. The delayed apoptosis of borr mutant cells in the developing wing disc appears to cause non-autonomous repair responses in the neighbouring wild-type epithelium that involve Wingless signalling, which ultimately perturb the tissue architecture of adult flies. Unexpectedly, during late larval development, cells survive loss of borr and develop giant bristles that may reflect their high degree of ploidy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom