z-logo
open-access-imgOpen Access
Retinoic acid-dependent eye morphogenesis is orchestrated by neural crest cells
Author(s) -
Nicolas Matt,
Valérie Dupé,
JeanMarie Garnier,
Christine Dennefeld,
Pierre Chambon,
Manuel Mark,
Norbert B. Ghyselinck
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.02031
Subject(s) - biology , neural crest , retinoic acid , retina , eye development , microbiology and biotechnology , morphogenesis , mesenchyme , ectoderm , anatomy , neuroscience , embryogenesis , genetics , mesenchymal stem cell , phenotype , embryo , cell culture , gene
Using genetic approaches in the mouse, we show that the primary target tissue of retinoic acid (RA) action during eye morphogenesis is not the retina nor the corneal ectoderm, which both express RA-synthesizing retinaldehyde dehydrogenases (RALDH1 and RALDH3), but the neural crest cell-derived periocular mesenchyme (POM), which is devoid of RALDH. In POM, the effects of the paracrine RA signal are mediated by the nuclear RA receptors heterodimers RXRalpha/RARbeta and RXRalpha/RARgamma. These heterodimers appear to control: (1) the remodeling of the POM through activation of Eya2-related apoptosis; (2) the expression of Foxc1 and Pitx2, which play crucial roles in anterior eye segment development; and (3) the growth of the ventral retina. We additionally show that RALDH1 and RALDH3 are the only enzymes that are required for RA synthesis in the eye region from E10.5 to E13.5, and that patterning of the dorsoventral axis of the retina does not require RA.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom