Hedgehog and Wingless stabilize but do not induce cell fate duringDrosophiladorsal embryonic epidermal patterning
Author(s) -
Stéphane D. Vincent,
Norbert Perrimon,
Jeffrey D. Axelrod
Publication year - 2008
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.017814
Subject(s) - biology , hedgehog , cell fate determination , epidermis (zoology) , embryonic stem cell , microbiology and biotechnology , hedgehog signaling pathway , cell , fate mapping , embryogenesis , developmental biology , embryo , anatomy , signal transduction , genetics , transcription factor , gene
A fundamental concept in development is that secreted molecules such as Wingless (Wg) and Hedgehog (Hh) generate pattern by inducing cell fate. By following markers of cellular identity posterior to the Wg- and Hh-expressing cells in the Drosophila dorsal embryonic epidermis, we provide evidence that neither Wg nor Hh specifies the identity of the cell types they pattern. Rather, they maintain pre-existing cellular identities that are otherwise unstable and progress stepwise towards a default fate. Wg and Hh therefore generate pattern by inhibiting specific switches in cell identity, showing that the specification and the patterning of a given cell are uncoupled. Sequential binary decisions without induction of cell identity give rise to both the groove cells and their posterior neighbors. The combination of independent progression of cell identity and arrest of progression by signals facilitates accurate patterning of an extremely plastic developing epidermis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom