z-logo
open-access-imgOpen Access
FGFR2b signaling regulates ex vivo submandibular gland epithelial cell proliferation and branching morphogenesis
Author(s) -
Zachary L. Steinberg,
Christopher D. Myers,
Ver M. Heim,
Colin A. Lathrop,
Ivan T. Rebustini,
Julian S. Stewart,
Melinda Larsen,
Matthew P. Hoffman
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.01690
Subject(s) - fgf10 , biology , fibroblast growth factor , microbiology and biotechnology , morphogenesis , fgf1 , fibroblast growth factor receptor , receptor , biochemistry , gene
Branching morphogenesis of mouse submandibular glands is regulated by multiple growth factors. Here, we report that ex vivo branching of intact submandibular glands decreases when either FGFR2 expression is downregulated or soluble recombinant FGFR2b competes out the endogenous growth factors. However, a combination of neutralizing antibodies to FGF1, FGF7 and FGF10 is required to inhibit branching in the intact gland, suggesting that multiple FGF isoforms are required for branching. Exogenous FGFs added to submandibular epithelial rudiments cultured without mesenchyme induce distinct morphologies. FGF7 induces epithelial budding, whereas FGF10 induces duct elongation, and both are inhibited by FGFR or ERK1/2 signaling inhibitors. However, a PI3-kinase inhibitor also decreases FGF7-mediated epithelial budding, suggesting that multiple signaling pathways exist. We immunolocalized FGF receptors and analyzed changes in FGFR, FGF and MMP gene expression to identify the mechanisms of FGF-mediated morphogenesis. FGFR1b and FGFR2b are present throughout the epithelium, although FGFR1b is more highly expressed around the periphery of the buds and the duct tips. FGF7 signaling increases FGFR1b and FGF1 expression, and MMP2 activity, when compared with FGF10, resulting in increased cell proliferation and expansion of the epithelial bud, whereas FGF10 stimulates localized proliferation at the tip of the duct. FGF7- and FGF10-mediated morphogenesis is inhibited by an MMP inhibitor and a neutralizing antibody to FGF1, suggesting that both FGF1 and MMPs are essential downstream mediators of epithelial morphogenesis. Taken together, our data suggests that FGFR2b signaling involves a regulatory network of FGFR1b/FGF1/MMP2 expression that mediates budding and duct elongation during branching morphogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom