z-logo
open-access-imgOpen Access
Specification of individual Slouch muscle progenitors inDrosophilarequires sequential Wingless signaling
Author(s) -
Virginia T. Cox,
Mary K. Baylies
Publication year - 2005
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.01610
Subject(s) - biology , mesoderm , wnt signaling pathway , microbiology and biotechnology , transcription factor , genetics , developmental biology , signal transduction , gene , embryonic stem cell
The patterning of the Drosophila mesoderm requires Wingless (Wg), one of the founding members of a large family of secreted glycoproteins, the Wnt family. Little is known about how Wg provides patterning information to the mesoderm, which is neither an epithelium nor contains the site of Wg production. By studying specification of muscle founder cells as marked by the lineage-specific transcription factor Slouch, we asked how mesodermal cells interpret the steady flow of Wg. Through the manipulation of place, time and amount of Wg signaling, we have observed that Slouch founder cell cluster II is more sensitive to Wg levels than the other Slouch-positive founder cell clusters. To specify Slouch cluster I, Wg signaling is required to maintain high levels of the myogenic transcriptional regulator Twist. However, to specify cluster II, Wg not only maintains high Twist levels, but also provides a second contribution to activate Slouch expression. This dual requirement for Wg provides a paradigm for understanding how one signaling pathway can act over time to create a diverse array of patterning outcomes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom