Independent roles of thedachshundandeyes absentgenes in BMP signaling, axon pathfinding and neuronal specification
Author(s) -
Irene MiguelAliaga,
Douglas W. Allan,
Stefan Thor
Publication year - 2004
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.01447
Subject(s) - biology , axon guidance , pathfinding , phenotype , neuroscience , neuropeptide , microbiology and biotechnology , transcription factor , signal transduction , gene , axon , genetics , receptor , graph , mathematics , discrete mathematics , shortest path problem
In the Drosophila nerve cord, a subset of neurons expresses the neuropeptide FMRFamide related (Fmrf). Fmrf expression is controlled by a combinatorial code of intrinsic factors and an extrinsic BMP signal. However, this previously identified code does not fully explain the regulation of Fmrf. We have found that the Dachshund (Dac) and Eyes Absent (Eya) transcription co-factors participate in this combinatorial code. Previous studies have revealed an intimate link between Dac and Eya during eye development. Here, by analyzing their function in neurons with multiple phenotypic markers, we demonstrate that they play independent roles in neuronal specification, even within single cells. dac is required for high-level Fmrf expression, and acts potently together with apterous and BMP signaling to trigger Fmrf expression ectopically, even in motoneurons. By contrast, eya regulates Fmrf expression by controlling both axon pathfinding and BMP signaling, but cannot trigger Fmrf ectopically. Thus, we show that dac and eya perform entirely different functions in a single cell type to ultimately regulate a single phenotypic outcome.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom