z-logo
open-access-imgOpen Access
The receptor tyrosine kinase Off-track is required for layer-specific neuronal connectivity inDrosophila
Author(s) -
Patrick Cafferty,
Li Yu,
Yong Rao
Publication year - 2004
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.01406
Subject(s) - biology , lamina , medulla , neuroscience , receptor tyrosine kinase , microbiology and biotechnology , growth cone , tropomyosin receptor kinase c , anatomy , receptor , axon , signal transduction , genetics , platelet derived growth factor receptor , growth factor
The nervous system in many species consists of multiple neuronal cell layers, each forming specific connections with neurons in other layers or other regions of the brain. How layer-specific connectivity is established during development remains largely unknown. In the Drosophila adult visual system, photoreceptor (R cell) axons innervate one of two optic ganglia layers; R1-R6 axons connect to the lamina layer, while R7 and R8 axons project through the lamina into the deeper medulla layer. Here, we show that the receptor tyrosine kinase Off-track (Otk) is specifically required for lamina-specific targeting of R1-R6 axons. Otk is highly expressed on R1-R6 growth cones. In the absence of otk, many R1-R6 axons connect abnormally to medulla instead of innervating lamina. We propose that Otk is a receptor or a component of a receptor complex that recognizes a target-derived signal for R1-R6 axons to innervate the lamina layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom