z-logo
open-access-imgOpen Access
The homeobox geneXbh1cooperates with proneural genes to specify ganglion cell fate within theXenopusneural retina
Author(s) -
Lucia Poggi,
Teresa Vottari,
Giuseppina Barsacchi,
Joachim Wittbrodt,
Robert Vignali
Publication year - 2004
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.01099
Subject(s) - biology , homeobox , xenopus , retina , cell fate determination , retinal ganglion cell , microbiology and biotechnology , eye development , genetics , gene , ganglion , zebrafish , proneural genes , neuroscience , transcription factor
Recent studies on vertebrate eye development have focused on the molecular mechanisms of specification of different retinal cell types during development. Only a limited number of genes involved in this process has been identified. In Drosophila, BarH genes are necessary for the correct specification of R1/R6 eye photoreceptors. Vertebrate Bar homologues have been identified and are expressed in vertebrate retinal ganglion cells during differentiation; however, their retinal function has not yet been addressed. In this study, we report on the role of the Xenopus Bar homologue Xbh1 in retinal ganglion cell development and its interaction with the proneural genes Xath5 and Xath3, whose ability to promote ganglion cell fate has been demonstrated. We show that XHB1 plays a crucial role in retinal cell determination, acting as a switch towards ganglion cell fate. Detailed expression analysis, animal cap assays and in vivo lipofection assays, indicate that Xbh1 acts as a late transcriptional repressor downstream of the atonal genes Xath3 and Xath5. However, the action of Xbh1 on ganglion cell development is different and more specific than that of the Xath genes, and accounts for only a part of their activities during retinogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom