z-logo
open-access-imgOpen Access
Lachesin is a component of a septate junction-based mechanism that controls tube size and epithelial integrity in theDrosophilatracheal system
Author(s) -
Marta Llimargas,
Maura Strigini,
Markella Katidou,
Domna Karagogeos,
Jordi Casanova
Publication year - 2003
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.00917
Subject(s) - biology , morphogenesis , microbiology and biotechnology , septate junctions , mutant , cell adhesion , cell , phenotype , mutation , adherens junction , cell junction , genetics , cadherin , gene
Organ morphogenesis requires the coordinated activity of many mechanisms involved in cell rearrangements, size control, cell proliferation and organ integrity. Here we report that Lachesin (Lac), a cell surface protein, is required for the proper morphogenesis of the Drosophila tracheal system. Homozygous embryos for Lac mutations, which we find fail to complement the previous identified bulbous (bulb) mutation, display convoluted tracheal tubes and tube breaks. At the cellular level, we can detect enlarged cells, suggesting that Lac regulates organ size by influencing cell length rather than cell number, and cell detachments, indicating a role for Lac in cell adhesion. Results from an in vitro assay further support that Lac behaves as a homophilic cell adhesion molecule. Lac co-localizes with Septate Junction (SJ) proteins, and ultrastructural analysis confirms that it accumulates specifically at this type of cellular junction. In Lac mutant embryos, previously characterized components of the SJs are mislocalized, indicating that the proper organization of SJs requires Lac function. In addition, mutations in genes encoding other components of the SJs produce a similar tracheal phenotype. These results point out a new role of the SJs in morphogenesis regulating cell adhesion and cell size.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom