Initial state of theDrosophilaeye before dorsoventral specification is equivalent to ventral
Author(s) -
Amit Singh,
KwangWook Choi
Publication year - 2003
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.00864
Subject(s) - biology , eye development , primordium , lineage (genetic) , imaginal disc , cell fate determination , anatomy , embryo , dorsum , microbiology and biotechnology , transcription factor , fate mapping , phenotype , eye proteins , gene , genetics , embryonic stem cell
Dorsoventral (DV) patterning is crucial for eye development in invertebrates and higher animals. DV lineage restriction is the primary event in undifferentiated early eye primordia of Drosophila. In Drosophila eye disc, a dorsal-specific GATA family transcription factor pannier (pnr) controls Iroquois-Complex (Iro-C) genes to establish the dorsal eye fate whereas Lobe (L), which is involved in controlling a Notch ligand Serrate (Ser), is specifically required for ventral growth. However, fate of eye disc cells before the onset of dorsal expression of pnr and Iro-C is not known. We show that L/Ser are expressed in entire early eye disc before the expression of pnr and Iro-C is initiated in late first instar dorsal eye margin cells. Our evidence suggests that during embryogenesis pnr activity is not essential for eye development. We present evidence that loss of L or Ser function prior to initiation of pnr expression results in elimination of the entire eye, whereas after the onset of pnr expression it results only in preferential loss of ventral half of eye. We demonstrate that dorsal eye disc cells also become L or Ser dependent when they are ventralized by removal of pnr or Iro-C gene function. Therefore, we propose that early state of the eye prior to DV lineage restriction is equivalent to ventral and requires L and Ser gene function.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom