Na,K-ATPase is essential for embryonic heart development in the zebrafish
Author(s) -
Xiaodong Shu,
Karen Y. Cheng,
Neil Patel,
Fuhua Chen,
Elaine M. Joseph,
HuaiJen Tsai,
JauNian Chen
Publication year - 2003
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.00844
Subject(s) - zebrafish , biology , gene isoform , heart development , morpholino , microbiology and biotechnology , embryonic heart , mutant , embryonic stem cell , genetics , gene
Na,K-ATPase is an essential gene maintaining electrochemical gradients across the plasma membrane. Although previous studies have intensively focused on the role of Na,K-ATPase in regulating cardiac function in the adults, little is known about the requirement for Na,K-ATPase during embryonic heart development. Here, we report the identification of a zebrafish mutant, heart and mind, which exhibits multiple cardiac defects, including the primitive heart tube extension abnormality, aberrant cardiomyocyte differentiation, and reduced heart rate and contractility. Molecular cloning reveals that the heart and mind lesion resides in the alpha1B1 isoform of Na,K-ATPase. Blocking Na,K-ATPase alpha1B1 activity by pharmacological means or by morpholino antisense oligonucleotides phenocopies the patterning and functional defects of heart and mind mutant hearts, suggesting crucial roles for Na,K-ATPase alpha1B1 in embryonic zebrafish hearts. In addition to alpha1B1, the Na,K-ATPase alpha2 isoform is required for embryonic cardiac patterning. Although the alpha1B1 and alpha2 isoforms share high degrees of similarities in their coding sequences, they have distinct roles in patterning zebrafish hearts. The phenotypes of heart and mind mutants can be rescued by supplementing alpha1B1, but not alpha2, mRNA to the mutant embryos, demonstrating that alpha1B1 and alpha2 are not functionally equivalent. Furthermore, instead of interfering with primitive heart tube formation or cardiac chamber differentiation, blocking the translation of Na,K-ATPase alpha2 isoform leads to cardiac laterality defects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom