Genome-wide analysis of DNA methylation patterns
Author(s) -
Daniel Zilberman,
Steven Henikoff
Publication year - 2007
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.001131
Subject(s) - biology , dna methylation , methylated dna immunoprecipitation , illumina methylation assay , bisulfite sequencing , methylation , rna directed dna methylation , epigenomics , computational biology , dna microarray , genetics , dna , genome , gene , gene expression
Cytosine methylation is the most common covalent modification of DNA in eukaryotes. DNA methylation has an important role in many aspects of biology, including development and disease. Methylation can be detected using bisulfite conversion, methylation-sensitive restriction enzymes, methyl-binding proteins and anti-methylcytosine antibodies. Combining these techniques with DNA microarrays and high-throughput sequencing has made the mapping of DNA methylation feasible on a genome-wide scale. Here we discuss recent developments and future directions for identifying and mapping methylation, in an effort to help colleagues to identify the approaches that best serve their research interests.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom