z-logo
open-access-imgOpen Access
Expression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider miteTetranychus urticae
Author(s) -
Peter K. Dearden,
Cameron Donly,
Miodrag Grbić
Publication year - 2002
Publication title -
development
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.754
H-Index - 325
eISSN - 1477-9129
pISSN - 0950-1991
DOI - 10.1242/dev.00099
Subject(s) - biology , tetranychus urticae , spider mite , sitophilus , body plan , genetics , lineage (genetic) , evolutionary biology , gene , botany , zoology , mite
Embryo segmentation has been studied extensively in the fruit fly, Drosophila. These studies have demonstrated that a mechanism acting with dual segment periodicity is required for correct patterning of the body plan in this insect, but the evolutionary origin of the mechanism, the pair-rule system, is unclear. We have examined the expression of the homologues of two Drosophila pair-rule genes, runt and paired (Pax Group III), in segmenting embryos of the two-spotted spider mite (Tetranychus urticae Koch). Spider mites are chelicerates, a group of arthropods that diverged from the lineage leading to Drosophila at least 520 million years ago. In T. urticae, the Pax Group III gene Tu-pax3/7 was expressed during patterning of the prosoma, but not the opisthosoma, in a series of stripes which appear first in even numbered segments, and then in odd numbered segments. The mite runt homologue (Tu-run) in contrast was expressed early in a circular domains that resolved into a segmental pattern. The expression patterns of both of these genes also indicated they are regulated very differently from their Drosophila homologues. The expression pattern of Tu-pax3/7 lends support to the possibility that a pair-rule patterning mechanism is active in the segmentation pathways of chelicerates.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom