The Spalt transcription factors regulate cell proliferation, survival and epithelial integrity downstream of the Decapentaplegic signalling pathway
Author(s) -
María F. Organista,
José F. de Celis
Publication year - 2012
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.20123038
Subject(s) - decapentaplegic , biology , transcription factor , microbiology and biotechnology , psychological repression , gene , genetics , gene expression , enhancer
The expression of the spalt genes is regulated by the Decapentaplegic signalling pathway in the Drosophila wing. These genes participate in the patterning of the longitudinal wing veins by regulating the expression of vein-specific genes, and in the establishment of cellular affinities in the central region of the wing blade epithelium. The Spalt proteins act as transcription factors, most likely regulating gene expression by repression, but the identity of their target genes in the wing is still unknown. As a preliminary step to unravel the genetic hierarchy controlled by the Spalt proteins, we have analysed their requirements during wing development, and addressed to what extent they mediate all the functions of the Decapentaplegic pathway in this developmental system. We identify additional functions for Spalt in cell division, survival, and maintenance of epithelial integrity. Thus, Spalt activity is required to promote cell proliferation, acting in the G2/M transition of the cell cycle. The contribution of Spalt to cell division is limited to the central region of the wing blade, as they do not mediate the extra growth triggered by Decapentaplegic signalling in the peripheral regions of the wing disc. In addition, Spalt function is required to maintain cell viability in cells exposed to high levels of Decapentaplegic signalling. This aspect of Spalt function is related to the repression of JNK signalling in the spalt domain of expression. Finally, we further characterise the requirements of Spalt to maintain epithelial integrity by regulating cellular affinities between cells located in the central wing region. Our results indicate that Spalt function mediates most of the requirements identified for Decapentaplegic signalling, contributing to establish the cellular qualities that differentiate central versus peripheral territories in the wing blade.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom