exTREEmaTIME: a method for incorporating uncertainty into divergence time estimates
Author(s) -
Tom Carruthers,
Robert W. Scotland
Publication year - 2022
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.059181
Subject(s) - divergence (linguistics) , estimation , set (abstract data type) , computer science , series (stratigraphy) , econometrics , statistics , biology , mathematics , paleontology , philosophy , linguistics , management , economics , programming language
We present a method of divergence time estimation (exTREEmaTIME) that aims to effectively account for uncertainty in divergence time estimates. The method requires a minimal set of assumptions, and, based on these assumptions, estimates the oldest possible divergence times and youngest possible divergence times that are consistent with the assumptions. We use a series of simulations and empirical analyses to illustrate that exTREEmaTIME is effective at representing uncertainty. We then describe how exTREEmaTIME can act as a basis to determine the implications of the more stringent assumptions that are incorporated into other methods of divergence time estimation that produce more precise estimates. This is critically important given that many of the assumptions that are incorporated into these methods are highly complex, difficult to justify biologically, and as such can lead to estimates that are highly inaccurate. This article has an associated First Person interview with the first author of the paper.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom