z-logo
open-access-imgOpen Access
Human trophoblasts are primarily distinguished from somatic cells by differences in the pattern rather than the degree of global CpG methylation
Author(s) -
Teena K. J. B. Gamage,
William Schierding,
Peter Tsai,
Jackie L. Ludgate,
Larry Chamley,
Robert J. Weeks,
Erin C. Macaulay,
Joanna L. James
Publication year - 2018
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.034884
Subject(s) - biology , methylation , somatic cell , cpg site , dna methylation , degree (music) , evolutionary biology , genetics , computational biology , gene , gene expression , physics , acoustics
The placenta is a fetal exchange organ connecting mother and baby that facilitates fetal growth in utero DNA methylation is thought to impact placental development and function. Global DNA methylation studies using human placental lysates suggest that the placenta is uniquely hypomethylated compared to somatic tissue lysates, and this hypomethylation is thought to be important in conserving the unique placental gene expression patterns required for successful function. In the placental field, methylation has frequently been examined in tissue lysates, which contain mixed cell types that can confound results. To better understand how DNA methylation influences placentation, DNA from isolated first trimester trophoblast populations underwent reduced representation bisulfite sequencing and was compared to publicly available data of blastocyst-derived and somatic cell populations. First, this revealed that, unlike murine blastocysts, human trophectoderm and inner cell mass samples did not have significantly different levels of global methylation. Second, our work suggests that differences in global CpG methylation between trophoblasts and somatic cells are much smaller than previously reported. Rather, our findings suggest that different patterns of CpG methylation may be more important in epigenetically distinguishing the placenta from somatic cell populations, and these patterns of methylation may contribute to successful placental/trophoblast function.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom