z-logo
open-access-imgOpen Access
Inhibition of miR-34a-5p alleviates hypoxia-reoxygenation injury by enhancing autophagy in steatotic hepatocytes
Author(s) -
Chuanjiang Li,
Kai Wang,
Linghong Guo,
Hang Sun,
Hai Huang,
Xinxin Lin,
Qingping Li
Publication year - 2018
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.033290
Subject(s) - autophagy , apoptosis , biology , hepatocyte , downregulation and upregulation , microrna , steatosis , liver injury , hypoxia (environmental) , microbiology and biotechnology , cancer research , liver transplantation , in vitro , pharmacology , transplantation , medicine , chemistry , biochemistry , endocrinology , gene , organic chemistry , oxygen
Hypoxia-reoxygenation (H/R) injury in steatotic hepatocytes has been implicated in liver dysfunction after liver transplantation. MicroRNAs (miRs) play important roles in regulating several cell biology mechanisms related to H/R injury. However, the role of miRs in regulating H/R injury in steatotic hepatocytes is still unclear. We established an in vitro model for studying H/R injury in steatotic hepatocytes and identified miR-34a-5p as a miR that was substantially upregulated in steatotic hepatocytes under H/R challenge. MiR-34a-5p expression was modified by transfecting miR-34a-5p mimic and inhibitor into H/R-challenged steatotic hepatocytes. We found that inhibition of miR-34a-5p alleviated H/R-induced apoptosis and promoted post-H/R proliferation in steatotic hepatocytes. Whereas, overexpression of miR-34a-5p augmented H/R-induced apoptosis and prohibited post-H/R proliferation. By examining autophagy, our data demonstrated that miR-34a-5p suppressed autophagy in H/R-challenged steatotic hepatocytes, induction of autophagy partially rescued the exaggeration of H/R injury induced by miR-34a-5p mimic, while inhibition of autophagy impaired the protection of the miR-34a-5p inhibitor against H/R injury. In conclusion, miR-34a-5p is crucial in exaggerating H/R injury, likely by suppressing autophagy in steatotic hepatocytes. Inhibition of miR-34a may be a promising strategy to protect steatotic hepatocytes against H/R-injury.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom