Pias3 is necessary for dorso-ventral patterning and visual response of retinal cones but is not required for rod photoreceptor differentiation
Author(s) -
Christie Campla,
Hannah Breit,
Lijin Dong,
Jessica Gumerson,
Jérôme E. Roger,
Anand Swaroop
Publication year - 2017
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.024679
Subject(s) - biology , retina , retinal , opsin , microbiology and biotechnology , electroretinography , visual phototransduction , muller glia , phenotype , photopic vision , neuroscience , genetics , gene , rhodopsin , stem cell , progenitor cell , biochemistry
Protein inhibitor of activated Stat 3 (Pias3) is implicated in guiding specification of rod and cone photoreceptors through post-translational modification of key retinal transcription factors. To investigate its role during retinal development, we deleted exon 2-5 of the mouse Pias3 gene, which resulted in complete loss of the Pias3 protein. Pias3 -/- mice did not show any overt phenotype, and retinal lamination appeared normal even at 18 months. We detected reduced photopic b-wave amplitude by electroretinography following green light stimulation of postnatal day (P)21 Pias3 -/- retina, suggesting a compromised visual response of medium wavelength (M) cones. No change was evident in response of short wavelength (S) cones or rod photoreceptors until 7 months. Increased S-opsin expression in the M-cone dominant dorsal retina suggested altered distribution of cone photoreceptors. Transcriptome profiling of P21 and 18-month-old Pias3 -/- retina revealed aberrant expression of a subset of photoreceptor genes. Our studies demonstrate functional redundancy in SUMOylation-associated transcriptional control mechanisms and identify a specific, though limited, role of Pias3 in modulating spatial patterning and optimal function of cone photoreceptor subtypes in the mouse retina.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom