z-logo
open-access-imgOpen Access
Centrin diversity and basal body patterning across evolution: new insights fromParamecium
Author(s) -
Anne AubussonFleury,
Guillaume Balavoine,
Michel Lemullois,
Khaled Bouhouche,
Janine Beisson,
France Koll
Publication year - 2017
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.024273
Subject(s) - biology , paramecium , diversity (politics) , basal body , basal (medicine) , evolutionary biology , zoology , microbiology and biotechnology , genetics , anthropology , flagellum , gene , sociology , insulin
First discovered in unicellular eukaryotes, centrins play crucial roles in basal body duplication and anchoring mechanisms. While the evolutionary status of the founding members of the family, Centrin2/Vfl2 and Centrin3/cdc31 has long been investigated, the evolutionary origin of other members of the family has received less attention. Using a phylogeny of ciliate centrins, we identify two other centrin families, the ciliary centrins and the centrins present in the contractile filaments (ICL centrins). In this paper, we carry on the functional analysis of still not well-known centrins, the ICL1e subfamily identified in Paramecium , and show their requirement for correct basal body anchoring through interactions with Centrin2 and Centrin3. Using Paramecium as well as a eukaryote-wide sampling of centrins from completely sequenced genomes, we revisited the evolutionary story of centrins. Their phylogeny shows that the centrins associated with the ciliate contractile filaments are widespread in eukaryotic lineages and could be as ancient as Centrin2 and Centrin3.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom