Amyloids assemble as part of recognizable structures during oogenesis in Xenopus
Author(s) -
Michael Hayes,
Daniel L. Weeks
Publication year - 2016
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.017384
Subject(s) - biology , xenopus , cytosol , amyloid (mycology) , rnase p , cytoplasm , microbiology and biotechnology , ubiquitin , rna , biochemistry , nucleus , rna polymerase ii , ribonucleoprotein , gene , enzyme , gene expression , botany , promoter
A hallmark of Alzheimer's, Huntington's and similar diseases is the assembly of proteins into amyloids rather than folding into their native state. There is an increasing appreciation that amyloids, under specific conditions, may be non-pathogenic. Here we show that amyloids form as a normal part of Xenopus oocyte development. Amyloids are detectable in the cytosol and the nucleus using an amyloid binding dye and antibodies that recognize amyloid structure. In the cytosol, yolk platelets are amyloid reactive, as are a number of yet to be characterized particles. In the nucleus, we find particles associated with transcription by RNA polymerase I, II and III and RNA processing contain amyloids. Nuclear amyloids remain intact for hours following isolation; however, RNase treatment rapidly disrupts nuclear amyloids.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom