Inhomogeneous distribution of Chlamydomonas in a cylindrical container with a bubble plume
Author(s) -
Yuki aka,
Kenji Kikuchi,
Keiko NumayamaTsuruta,
A. Kage,
Hironori Ueno,
Takuji Ishikawa
Publication year - 2016
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.015669
Subject(s) - container (type theory) , biology , bubble , chlamydomonas , plume , distribution (mathematics) , mechanics , marine engineering , meteorology , mechanical engineering , mathematics , physics , engineering , mathematical analysis , biochemistry , mutant , gene
Swimming microalgae show various taxes, such as phototaxis and gravitaxis, which sometimes result in the formation of a cell-rich layer or a patch in a suspension. Despite intensive studies on the effects of shear flow and turbulence on the inhomogeneous distribution of microalgae, the effect of a bubble plume has remained unclear. In this study, we used Chlamydomonas as model microalgae, and investigated the spatial distribution of cells in a cylindrical container with a bubble plume. The results illustrate that cells become inhomogeneously distributed in the suspension due to their motility and photo-responses. A vortical ring distribution was observed below the free surface when the bubble flow rate was sufficiently small. We performed a scaling analysis on the length scale of the vortical ring, which captured the main features of the experimental results. These findings are important in understanding transport phenomena in a microalgae suspension with a bubble plume.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom