z-logo
open-access-imgOpen Access
The invisible fish: hydrodynamic constraints for predator-prey interaction in fossil fishSaurichthyscompared to recent actinopterygians
Author(s) -
Ilja Kogan,
Steffen Pacholak,
Martin Licht,
Jörg W. Schneider,
Christoph Brücker,
Sebastian Brandt
Publication year - 2015
Publication title -
biology open
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.936
H-Index - 41
ISSN - 2046-6390
DOI - 10.1242/bio.014720
Subject(s) - biology , fish <actinopterygii> , predation , predator , fishery , apex predator , actinopterygii , zoology , ecology
Recent pike-like predatory fishes attack prey animals by a quick strike out of rest or slow movement. This fast-start behaviour includes a preparatory, a propulsive and a final phase, and the latter is crucial for the success of the attack. To prevent prey from escape, predators tend to minimise the duration of the interaction and the disturbance caused to surrounding water in order to not be detected by the prey's lateral line sensory system. We compared the hydrodynamic properties of the earliest fossil representative of the pike-like morphotype, the Triassic actinopterygian Saurichthys, with several recent pike-like predators by means of computational fluid dynamics (CFD). Rainbow trout has been used as a control example of a fish with a generalist body shape. Our results show that flow disturbance produced by Saurichthys was low and similar to that of the recent forms Belone and Lepisosteus, thus indicative of an effective ambush predator. Drag coefficients are low for all these fishes, but also for trout, which is a good swimmer over longer distances but generates considerable disturbance of flow. Second-highest flow disturbance values are calculated for Esox, which compensates the large disturbance with its extremely high acceleration performance (i.e. attacks at high speeds) and the derived teleostean protrusible mouth that allows prey catching from longer distances compared to the other fishes. We show CFD modelling to be a useful tool for palaeobiological reconstruction of fossil fishes, as it allows quantification of impacts of body morphology on a hypothesised lifestyle.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom