z-logo
open-access-imgOpen Access
Efficient MCMC for Gibbs random fields using pre-computation
Author(s) -
Aidan Boland,
Nial Friel,
Florian Maire
Publication year - 2018
Publication title -
electronic journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.482
H-Index - 54
ISSN - 1935-7524
DOI - 10.1214/18-ejs1504
Subject(s) - mathematics , markov chain monte carlo , gibbs sampling , computation , random field , statistical physics , statistics , algorithm , monte carlo method , bayesian probability , physics
Bayesian inference of Gibbs random fields (GRFs) is often referred to as a doubly intractable problem, since the likelihood function is intractable. The exploration of the posterior distribution of such models is typically carried out with a sophisticated Markov chain Monte Carlo (MCMC) method, the exchange algorithm (Murray et al., 2006), which requires simulations from the likelihood function at each iteration. The purpose of this paper is to consider an approach to dramatically reduce this computational overhead. To this end we introduce a novel class of algorithms which use realizations of the GRF model, simulated offline, at locations specified by a grid that spans the parameter space. This strategy speeds up dramatically the posterior inference, as illustrated on several examples. However, using the pre-computed graphs introduces a noise in the MCMC algorithm, which is no longer exact. We study the theoretical behaviour of the resulting approximate MCMC algorithm and derive convergence bounds using a recent theoretical development on approximate MCMC methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom